Skip to main content

ChEMBL DB on SQLite, is that even possible?



Short answer: Yes; Andrew Dalke did it in 2014 for ChEMBL 19 compounds but now it's officially supported by the ChEMBL team and covers the whole database.

One thing you can notice looking at the ChEMBL 21 FTP directory is a  new file called chembl_21_sqlite.tar.gz. What's that?

It's a binary SQLite database file containing all the ChEMBL 21 tables and data. If you don't know what the SQLite is, it's a very lightweight database system, that stores the entire database (definitions, tables, indices, and the data itself) as a single cross-platform file on a host machine. It's very popular as well, so if you have a Mac, Windows 10 or a Linux box, chances are that SQLite is already installed on your computer. Skype uses SQLite to store the local copy of conversation history and the Python language has SQLite bundled as a core library.

If it's so "lightweight", why is the SQLite ChEMBL 21 file 2.4GB, compared to less than 1.4GB for Oracle, MySQL and PostgreSQL dumps and is the largest file in the FTP directory? This is because the 'dumps' only contain raw data in a form of SQL statements, that yet have to be executed in order to create a database. In contrast, SQLite file IS a database already. This means that if you download a MySQL dump, for example, you need to install the MySQL server first. Most probably you will have to configure it as well. Once this is done, you install the MySQL client to create a new database and populate it with a data from the dump file. This can take several hours during which the engine will create tables and indexes. If you never done this before, the whole process can take you much longer and possibly you will need some help.

SQLite can make your life easier, all you have to do is to download the file from our FTP and uncompress it. The uncompressed file (named chembl_21.db ) will take about 12GB of your disk space. Once you done this, you can open a terminal and change the current directory to the one, which contains the file. Now all you have to do is to type:

sqlite3 chembl_21.db

If you have SQLite installed you will see the prompt ready to execute your SQL statements:



SQLite standard terminal shell has many useful commands making is extremely convenient for simple tasks such as exports. We use SQLite CLI ourselves to prepare chembl_21_chemreps.txt.gz file, which is a text file containing structure information of all the ChEMBL compounds used by the UniChem software. In order to create it, we execute the following commands:



OK, but I hate terminal, can I have a GUI instead? Yes, just install sqlitebrowser and open the file as you would with any other program. You will see ChEMBL 21 tables, you can browse data and execute SQL statements with autocompletion. Of course you can also use SQLite in your Python (or IPython notebooks) scripts or KNIME workflows.



Isn't ChEMBL a bit too large for SQLite capabilities? Of course SQLite has its limitations. It's good for quick hacking and prototyping but as it doesn't implement client-server architecture it doesn't scale well. If all you need is the ability to run a SQL query locally on your laptop or extract some data, then probably SQLite would be your best choice. It's exceptionally fast on SSD hard drives. The chemreps file we've described above was generated on the Mid 2014 MacBook Pro with SSD and it took less than a minute to prepare. Just keep in mind, that SQLite always does a full table scan for

count(*)

It does not keep meta information on tables to speed this process up so this operation will always be slower than on other engines.

How about chemistry logic? Riccardo Vianello created a project called ChemicaLite which is a cheminformatic SQLite database extension. It can generate and store fingerprints, compute descriptors, run chemical queries so everything you would expect from a normal chemical database.

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the

Mapping lists of IDs in ChEMBL

In order to facilitate the mapping of identifiers in ChEMBL, we have developed a new type of search in the ChEMBL Interface. Now, it is possible to enter a list of ChEMBL IDs and see a list of the corresponding entities. Here is an example: 1. Open the ChEMBL Interface , on the main search bar, click on 'Advanced Search': 2. Click on the 'Search by IDs' tab: 3. Select the source entity of the IDs and the destination entity that you want to map to: 4. Enter the identifiers, you can either paste them, or select a file to upload. When you paste IDs, by default it tries to detect the separator. You can also select from a list of separators to force a specific one: Alternatively, you can upload a file, the file can be compressed in GZIP and ZIP formats, this makes the transfer of the file to the ChEMBL servers faster. Examples of the files that can be uploaded to the search by IDs can be found  here . 5. Click on the search button: 6. You will be redirected to a search resul

New Drug Approvals - Pt. XVII - Telavancin (Vibativ)

The latest new drug approval, on 11th September 2009 was Telavancin - which was approved for the treatment of adults with complicated skin and skin structure infections (cSSSI) caused by susceptible Gram-positive bacteria , including Staphylococcus aureus , both methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Telavancin is also active against Streptococcus pyogenes , Streptococcus agalactiae , Streptococcus anginosus group (includes S. anginosus, S. intermedius and S. constellatus ) and Enterococcus faecalis (vancomycin susceptible isolates only). Telavancin is a semisynthetic derivative of Vancomycin. Vancomycin itself is a natural product drug, isolated originally from soil samples in Borneo, and is produced by controlled fermentation of Amycolatopsis orientalis - a member of the Actinobacteria . Telavancin has a dual mechanism of action, firstly it inhibits bacterial cell wall synthesis by interfering with the polymerization and cross-linking of peptid