Skip to main content

New Drug Approvals 2012 - Pt. V - Ivacaftor (KalydecoTM)





 
  ATC code R07AX02 
Wikipedia Ivacaftor

On January 31st, FDA approved Ivacaftor (previously known as VX-770, trade name Kalydeco) as a first-in-class oral drug for the treatment of a rare form of Cystic Fibrosis in patients aged 6 or older, caused by a G551D mutation of the CFTR gene.

Cystic Fibrosis (OMIM 219700) is an autosomal recessive genetic disease caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, resulting in a defective CFTR protein, an ABC-class chloride-ion transporter in epithelial cell membranes. Cystic Fibrosis (CF) most typically affects the lungs, leading to the secretion of thick mucus, consequent breathing difficulties and eventual secondary bacterial airway infections in an age-dependent manner, i.e. early infections with Staphylococcus aureus which eventually are replaced by Pseudomonas aeruginosa as disease progresses. Traditionally, management of the symptoms involves mechanical removal of mucus, assisted breathing by ventilators, and antibiotic treatment of the secondary infections.

Ivacaftor is the first drug directly targeting CFTR rather than CF symptoms alone. It is estimated that about 1 in 20 to 1 in 25 people unsymtomatically carry one allele of the defective gene, with about 1 in 2000 to 1 in 3000 newborns being homozygous for defective CFTR. Numerous mutations may cause disfunctional products of the CFTR gene. More than two thirds of cases are caused by ΔF508, the deletion of Phenylalanine at position 508 of the CFTR protein (UniProt P13569), leading to failure of targeting the protein to the plasma membrane. The G551D mutation Ivacaftor is approved for less than 5% of CF cases (about 1,200 patients in the United States). With this mutation, the protein is transported to the plasma membrane correctly, but ion transport is impaired. Ivacaftor improves ion transport, and is therefore a CFTR potentiator. Currently, Vertex are developing a further compound, VX-809  targeting the ΔF508 mutation (currently in phase 2), and Ataluren, targeting nonsense mutations, is in phase 3 clinical trials.
Ivacaftor (C24H28N2O3, PubChem 16220172) is a synthetic small molecule achiral drug with a molecular weight of 392.49 Da. It has 4 rotatable bonds, a calculated logP (alogP) of 4.516, 3 hydrogen bond acceptors and 3 hydrogen bond donors and is thus fully Ro5 compliant. IUPAC name: N-(2,4-ditert-butyl-5-hydroxyphenyl)-4-oxo-1H-quinoline-3-carboxamide InChi: InChI=1S/C24H28N2O3/c1-23(2,3)16-11-17(24(4, 5)6)20(27)12-19(16)26-22(29)15-13-25-18-10-8-7-9-14(18)21(15)28/h7-13, 27H,1-6H3,(H,25,28)(H,26,29) Canonical Smiles: CC(C)(C)C1=CC(=C(C=C1NC(=O)C2=CNC3=CC=CC=C3C2=O)O)C(C)(C)C Ivacaftor is dosed as 150 mg tablet twice daily (an equivalent of about 0.38 mM of active incredient per single dose), or less often in patients with renal impairment or patients taking CYP3A inhibitors (see below).

Peak plasma concentrations (Tmax) occur at about 4 hours post administration with a Cmax of 768 ng/mL and mean apparent volume of distribution of 353 L. The main route of clearance of Ivacaftor is fecal with an apparent terminal half-life (t1/2) of 12 hours for a single dose. Ivacaftor is known to interact with drugs that inhibit CYP3A, such as ketoconazole and fluconazole, both antifungal agents, and grapefruit juice, or drugs inducing CYP3A, such as the bactericidal antibiotic rifampin. Ivacaftor has not been tested in pregnant or nursing populations, infants younger than 6 years, or geriatric populations (CF being a disease mostly affecting young adults).

Ivacaftor has been developed by Vertex Pharmaceuticals (which it is also marketed by), and the Cystic Fibrosis Foundation.

The product website can be found here, and the full prescribing information, here.

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the

New Drug Approvals - Pt. XVII - Telavancin (Vibativ)

The latest new drug approval, on 11th September 2009 was Telavancin - which was approved for the treatment of adults with complicated skin and skin structure infections (cSSSI) caused by susceptible Gram-positive bacteria , including Staphylococcus aureus , both methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Telavancin is also active against Streptococcus pyogenes , Streptococcus agalactiae , Streptococcus anginosus group (includes S. anginosus, S. intermedius and S. constellatus ) and Enterococcus faecalis (vancomycin susceptible isolates only). Telavancin is a semisynthetic derivative of Vancomycin. Vancomycin itself is a natural product drug, isolated originally from soil samples in Borneo, and is produced by controlled fermentation of Amycolatopsis orientalis - a member of the Actinobacteria . Telavancin has a dual mechanism of action, firstly it inhibits bacterial cell wall synthesis by interfering with the polymerization and cross-linking of peptid

Mapping lists of IDs in ChEMBL

In order to facilitate the mapping of identifiers in ChEMBL, we have developed a new type of search in the ChEMBL Interface. Now, it is possible to enter a list of ChEMBL IDs and see a list of the corresponding entities. Here is an example: 1. Open the ChEMBL Interface , on the main search bar, click on 'Advanced Search': 2. Click on the 'Search by IDs' tab: 3. Select the source entity of the IDs and the destination entity that you want to map to: 4. Enter the identifiers, you can either paste them, or select a file to upload. When you paste IDs, by default it tries to detect the separator. You can also select from a list of separators to force a specific one: Alternatively, you can upload a file, the file can be compressed in GZIP and ZIP formats, this makes the transfer of the file to the ChEMBL servers faster. Examples of the files that can be uploaded to the search by IDs can be found  here . 5. Click on the search button: 6. You will be redirected to a search resul