Skip to main content

New Drug Approvals 2011 - Pt. XXX - Aflibercept (EyleaTM)


ATC code (partial): S01LA

On November 18th 2011, the FDA approved Aflibercept (trade name: Eylea; Research Code: AVE-0005,  also known as VEGF Trap), a recombinant fusion protein indicated for the treatment of patients with neovascular (wet) age-related macular degeneration (AMD).

AMD is an eye condition which usually occurs in older patients and affects the macula area of the retina, causing loss of vision and eventually blindness. In particular, wet AMD is characterised by an abnormal growth of new blood vessels (neovascularisation) behind the retina. This originates from an abnormal activation of angiogenesis, by the vascular endothelial growth factor-A (VEGF-A; ChEMBL: CHEMBL1783; Uniprot: P15692) and the placenta growth factor (PlGF; ChEMBL: CHEMBL1697671; Uniprot: P49763), of the vascular endothelial growth factor receptors VEGFR-1 (ChEMBL: CHEMBL1868; Uniprot: P17948) and VEGFR-2 (ChEMBL: CHEMBL279; Uniprot: P35968), two receptor tyrosine kinases present on the surface of endothelial cells. This leads to abnormal increased permeability, scarring and possibly to the loss of fine-resolution central vision. Aflibercept acts as a soluble 'decoy' receptor that binds VEGF-A and PlGF and thereby inhibits the binding and activation of the VEGFR-1 and VEGFR-2 receptors.

Aflibercept is a recombinant fusion protein that incorporates portions of extracellular domains of the human VEGFR-1 (containing Ig-like C2-type 2 domain fragment; Uniprot: P17948|151-214|) and VEGFR-2 (containing Ig-like C2-type 3 domain fragment; Uniprot: P35968|224-320|) fused to the Fc portion of human immunoglobulin G1 (IgG1). Aflibercept is a dimeric glycoprotein with a protein molecular weight of 97 kDa (115 kDa with glycosylation).


>Aflibercept
SDTGRPFVEM YSEIPEIIHM TEGRELVIPC RVTSPNITVT LKKFPLDTLI PDGKRIIWDS
RKGFIISNAT YKEIGLLTCE ATVNGHLYKT NYLTHRQTNT IIDVVLSPSH GIELSVGEKL
VLNCTARTEL NVGIDFNWEY PSSKHQHKKL VNRDLKTQSG SEMKKFLSTL TIDGVTRSDQ
GLYTCAASSG LMTKKNSTFV RVHEKDKTHT CPPCPAPELL GGPSVFLFPP KPKDTLMISR
TPEVTCVVVD VSHEDPEVKF NWYVDGVEVH NAKTKPREEQ YNSTYRVVSV LTVLHQDWLN
GKEYKCKVSN KALPAPIEKT ISKAKGQPRE PQVYTLPPSR DELTKNQVSL TCLVKGFYPS
DIAVEWESNG QPENNYKTTP PVLDSDGSFF LYSKLTVDKS RWQQGNVFSC SVMHEALHNH
YTQKSLSLSP G


Other therapies to treat AMD are available on the market and these include Verteporfin (ChEMBL: CHEMBL1200573; approved in 2000; trade name Visudyne), Pegaptanib sodium (ChEMBL: CHEMBL1201421; approved in 2004; trade name Macugen) and Ranibizumab (ChEMBL: CHEMBL1201825; approved on 2006; trade name Lucentis).

Aflibercept recommended dosage is 2 mg administrated by intravitreal (into the eye cavity) injection every 4 weeks for the first 12 weeks, followed by 2 mg via intravitreal injection once every 8 weeks.

Following intravitreal administration of 2 mg per eye, a fraction of the administrated dose binds to the endogenous VEGF in the eye to form the inactive Aflibercept:VEGF complex. Once absorbed into the systemic circulation, Aflibercept presents in the plasma as the free unbound Aflibercept and predominantly as the inactive Aflibercept:VEGF complex. Aflibercept has a volume of distribution (Vd) of 6 L and a terminal elimination half-life (t1/2) of 5 to 6 days after iv administration of doses of 2 to 4 mg.kg-1 of Aflibercept. Aflibercept undergoes elimination through both target-mediated disposition via binding to free endogenous VEGF and metabolism via proteolysis.

The full prescribing information for Eylea can be found here.

The license holder is Regeneron Pharmaceuticals, Inc. and the product website is www.eylea.com.

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the

New Drug Approvals - Pt. XVII - Telavancin (Vibativ)

The latest new drug approval, on 11th September 2009 was Telavancin - which was approved for the treatment of adults with complicated skin and skin structure infections (cSSSI) caused by susceptible Gram-positive bacteria , including Staphylococcus aureus , both methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Telavancin is also active against Streptococcus pyogenes , Streptococcus agalactiae , Streptococcus anginosus group (includes S. anginosus, S. intermedius and S. constellatus ) and Enterococcus faecalis (vancomycin susceptible isolates only). Telavancin is a semisynthetic derivative of Vancomycin. Vancomycin itself is a natural product drug, isolated originally from soil samples in Borneo, and is produced by controlled fermentation of Amycolatopsis orientalis - a member of the Actinobacteria . Telavancin has a dual mechanism of action, firstly it inhibits bacterial cell wall synthesis by interfering with the polymerization and cross-linking of peptid

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d